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Carbanion-Carbonium Ion Intermediates in 
Racemizations and S o b o l y s e s of Cyclopropanes1 

Sir: 

Although heterocyclic three-membered rings2 and 
cyclopropanones3 appear to undergo thermal cleavage 
to give polar species, the usual thermal cleavage of 
cyclopropane compounds43'13 assumes a homolytic 
course. However, solvolysis-like products have been re­
ported to result from photolysis.4c,d We report here 
confirmation in a different system of an alternate mech­
anism suggested earlier6 that involved heterolytic cleav­
age of 2,2-dimethyl-l-carbomethoxy-l-phenylsulfonyl-
cyclopropane to form a carbon-carbon zwitterion that 
racemized, solvolyzed, and ring expanded. 

(95%), which after four recrystallizations (ethanol) 
gave (42%) maximum rotation, [a]25

5(6 +111° (c 0.63, 
ethyl acetate), mp 168.5-169.5°. Similarly ( - ) - I I 6 

gave (5 %) (-)-III , [a]255« -112° (c 0.59, ethyl acetate), 
mp 168.5-169.5°. Racemic IIP gave mp 146-147°. 

Methanolysis of III (150° for 3 days) gave ether IV6 

(46%) as an oil chromatographically pure: nmr (5) 
complex absorptions 2.9-3.6 (6) (including a singlet at 
3.04), 3.62 (s, 3), and 7.28 (s, 10); ir (cm"1) 3000 (m), 
2250 (w), 1750 (s), 1200-1283 (s), 1160 (s), and 1080 (s); 
mass spectrum, m/e 309. Olefin V6 (36%) was also 
produced: mp 96-97°; nmr 5 3.07 (d, 2, J = 8 Hz), 
6.02 (t, 1, J = 8 Hz), and 7.0-7.5 (m, 10); ir (cm"1) 
3000 (m), 2240 (m), and 1650 (w); mass spectrum, m/e 
219. When heated for 1 day at 126° in 0.1 M lithium 

Table I. Solvent and Salt Effects on Rates and Activation Parameters for Racemization of 0.05 M Solutions of (+)-HI 

Run 
no. Medium Temp, 0C 

k X 106, 
sec-1° kcal/moP AS*, eu'' 

1 
2 
3 
4 
5 
6 
7 

8 

CeH 6 
C&ri-s 
(CHs)2NCHO 
(CH3)2NCHO 
CH3OH 
CH3OH 
(CHa)2NCHO-

0.1 MLiBr 
(CH3)2NCHO-

0.1 MLiBr 

126.0 ± 0.05 
149.2 ± 0.02 
126.0 ± 0.05 
149.2 ± 0.02 
126.0 ± 0.05 
100.5 ± 0.02 
126.0 ± 0.05 

100.7 ± 0.02 

0.439 ± 0.001 
3.80 ± 0.01 
2.16 ± 0.02 

15.2 ± 0.1 r 
8.74 ± 0.17 i 
0.912 ± 0.011/ 

32.3 ± 0.5 i 

4.28 ± 0.02 

30.4 ± 0.2 

27.7 ± 0.3 

25.5 ± 0.3 

22.9 ± 0.4 

-7.6 i 0.6 

-11 ± 1 

-14 -± 1 

- 1 8 ± 1 

" Sealed ampoules of degassed, dry solutions were used, and rate constants calculated from loss of optical activity of solutions. Runs were 
followed through 92-95 % racemization with 7 points beyond time zero except in run 3 (4 points, 62%), run 4 (5 points, 65%), run 7 (6 points, 
65 %), and run 8 (4 points, 62 %). b Limits of error are based on two standard deviations (95 % confidence) in the rate constants from a least-
squares analysis, and on the temperature limits. 

Treatment of ethyl 2-cyano-3-phenylcinnamate with 
dimethyloxosulfonium methylide in dimethyl sulfoxide 
gave (80%) ethyl l-cyano-2,2-diphenylcyclopropane-
carboxylate (I): mp 132-1330;6 nmr spectrum, 6 
1.07 (L J = 3, 7 Hz), 2.33 and 2.68 (AB quartet, J = 2, 
5.5 Hz), 4.05 (q, J = 2,7 Hz), and7.1-7.7 (m, 10); mass 
spectrum, m/e 291. Derived acid II,6 mp 177-178° 
(90%), was obtained by basic hydrolysis of I at 25°. 
Decarboxylation of I in ethylene glycol-potassium 
hydroxide at 165° gave the known7 2,2-diphenylcyclo-
propanecarbonitrile (50%): mp 106-107°; nmr spec­
trum, 5 1.6-2.3 (m, 3), 7.1-7.5 (m, 10); mass spectrum, 
m/e 219. One recrystallization of the brucine salt of 
II from hot methanol provided (+)-II (51%), [a]2°oi6 

+ 128° (c0.71, ethyl acetate). The mother liquor gave 
( - ) - I I (49%), [a]25

5i6 -121° (c 0.53, ethyl acetate). 
Diazomethane and (-f-)-N gave methyl ester (+)-III6 
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bromide, III gave nitrile7 VI (54%) and lactone VIT1 

(23%): mp 132-133°; nmr S 1.55 (s, 3), 3.03 and 3.52 
(AB quartet, J = 2, 14 Hz), and 7.1-7.5 (m, 10); ir 
(cm-1) 3000 (m), 2250 (m), 1770 (s), 1250 (m), 1190 (s); 
mass spectrum, m/e 277. Nitriles VI and VII were 
separated chromatographically. 

CiH-,. 
CH11(JH 

C0H-, COXH3 

III 
CH-, C0,,CH, 

IV 

(CHANCHO 

0.1 M LiBr, 126 
CiH, 

Cr,HSs^^~^,CN 
C;H, o-C CH1 

% 
VIl 

The products in methanol suggest a zwitterionic 
intermediate, whereas those in dimethylformamide 
lithium bromide suggest bromide ion substitution on the 
methyl group of the ester.s Opt ical ly active III race-
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mized in both media much faster than IV-VII were pro­
duced, by a factor of at least 102 in methanol at 150°, 
and a factor of at least 23 in dimethylformamide-0.1 M 
lithium bromide at 126°. These factors were measured 
by product isolation experiments and first-order rate 
constant estimates. 

Preliminary rates of loss of optical activity of (+)-III 
at 0.05 M concentration in various solvents were mea­
sured polarimetrically at 125°. About a half-life was 
followed by ampoule technique (1-3 points per run), 
and less than 3 % (glc on 20% SE30 on Firebrick) of 
any compound other than III could be detected at the 
end of the run. The first-order rate constant for ben­
zene as solvent was 0.46 X 1O-6 sec-1, and the ratios of 
rate constants in other solvents to that in benzene were: 
CH3OH, 18; (CHs)2SO, 9.4; (CH3)2NCHO, 3.7; 
CH3CN, 2.3; (CH3)3COH, 2.0; C6H6, 1.0. Careful 
kinetic studies (Table I) indicated racemization followed 
strictly first-order kinetics through at least 1.5 half-
lives. The solutions used for the last two points in 
every run contained less than 1 % of any other product 
(glc). In runs 1, 2, 5, and 6, the last two points yielded 
94-98 % of sublimed III, pure to glc. 

The rate factor increase of 15 (runs 4 and 7) was dem­
onstrated due to bromide and not lithium ion with four 
parallel runs in dimethylformamide at 125° from which 
one-point rate constants were calculated and compared: 
run 9, no added salt, relative rate = 1; run 10, 0.1 M 
LiBr, relative rate = 14; run 11, 0.1 MLiClO4, relative 
rate = 1; run 12,0.1 M(C2Hs)4NBr, relative rate = 13. 
Four simultaneous one-point rate constant runs were 
made in dimethylformamide at 125°: run 13, 0.05 M 
LiBr, 1.4 X 10"4SeC-1; run 14, 0.10 MLiBr, 2.3 X 10"4 

sec"1; run 15, 0.20 M LiBr, 3.8 X 10-" sec-1; run 16, 
0.40 M LiBr, 7.0 X 10~4 sec-1. A plot of these rate 
constants against bromide ion concentration is linear. 
Extrapolation of the plot to zero bromide ion concentra­
tion provides a rate constant four times that calculated 
from runs 3 and 4 made without bromide. Thus bro­
mide salts at low concentration produce a sizable "spe­
cial salt effect"9 superimposed on which is a second-
order process. 

CO2CH3 A r ArNC CO2CH3 

OCH, 

Nu 

A r ArNC CO2CH3 

D 

A r ArNC CO2CH3 
-H-, 

Ar~ ArNC CO2CH3 

E 
General mechanisms for racemization of (-f-)-III can 

be envisioned in terms of intermediate structures, A-E. 

(8) See L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," 
Wiley, New York, N. Y., 1967, p 615, for references. 

(9) A. H. Fainberg and S. Winstein, / . Amer. Chem. Soc, 78, 2780 
(1956). 

The 7r-cyclopropane intermediate10 A is sterically im­
probable and is inconsistent with medium effects on 
rate. The triplet diradical intermediate B is incon­
sistent with the substantial response of A/ /* and AS* to 
solvent changes. Thus Ai /* is -~5 kcal/mol higher in 
benzene than in methanol, and AS1* is about —8 in 
benzene and —14 eu in methanol. Homolytic cleavage 
reactions show much smaller changes in AT/* with 
changes in medium, have AS* values around zero,3 '4 '11 

and show no special salt effects. Concerted formation 
and decomposition of ketene acetal C is a mechanism 
also inconsistent with the large AH* changes with 
medium and the special salt effect. The solvent-as­
sisted zwitterionic mechanism leading to intermediate D 
is impossible in benzene, and if it occurred in methanol, 
racemization in methanol would not be >102 faster than 
methanolysis. 

A mechanism in which E is formed as a first inter­
mediate is consistent with all the facts. This intermedi­
ate is visualized as a resonance hybrid, since the orbitals 
on the 1,3-carbon atoms are close enough together to 
provide some overlap. Intermediate E can have high 
zwitterionic character and substantial response to me­
dium. The special salt effect could reflect capture of 
E and in effect prevention of its direct collapse to op­
tically active III. Although E might form C or D in a 
second stage, it seems unlikely that D would give III 
in methanol or C would give III in any solvent. The 
second-order bromide ion catalysis of racemization is 
probably an SN2 reaction in its first stage, followed by 
rotational equilibration of the carbanion and ring 
closure by expulsion of bromide by C - . 
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Stereochemistry of the Methanolysis of a System with 
Carbon as Leaving Group1 

Sir: 

We have examined the stereochemical course of the 
methanolysis with ring opening of the substituted cy­
clopropane derivative, (-(-)-methyl l-(S)-cyano-2-(.R)-
phenylcyclopropanecarboxylate [(+)-(S),(.R)-I], and 
demonstrated that the reaction occurs with 99 ± 2% 
stereospecificity and inversion at the center (C-2) that 
underwent nucleophilic substitution. The preparation 
of all four stereomers of I of maximum rotation was 
accomplished, and their absolute configurations were as­
signed. The methanolysis product, methyl 2-cyano-4-
methoxy-4-phenylbutanoate (II), was converted to (—)-
(S)-methyl 4-methoxy-4-phenyJbutanoate, whose ab­
solute configuration and maximum rotation were also 
determined. 

Treatment of (£)-ethyl 2-cyanocinnamate2 with di-
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